Maximal Regular Extension of Convex Risk Measure

Keita Owari

The University of Tokyo owari@e.u-tokyo.ac.jp

CREST & 4th Ritsumeikan-Florence Workshop 9 Mar. 2012

@ Ritsumeikan Asia-Pacific Univ. Beppu

Based on a Joint Work with T. Arai

A General Quastion

Question	Main Result 000000000000
General Question	

- well-studied on L[∞] in various aspects: Delbaen, Föllmer, Schied, Kusuoka, Jouini, Schachermayer, Touzi, Kupper,...
- A direction: From bounded to unbounded, e.g.,
 - L^p: Kaina/Rüschendorf, Acciaio; Orlicz (type) spaces: Cheridito/Li, Arai
 - Abstract Fréchet lattices: Biagini/Frittelli ...

A "General" Question

How far can we go beyond L^{∞} ?

- usual flow: given a space \mathscr{X} , what ρ 's are possible?
- ours: given a ρ on L^{∞} , what spaces are possible?
 - Starting from a "regular" risk measure ρ^0 on L^{∞} ,
 - extend ρ^0 to as big space \mathscr{X} as possible preserving the regularity.

	Main Result
0000000	000000000000
General Question	

- well-studied on L[∞] in various aspects: Delbaen, Föllmer, Schied, Kusuoka, Jouini, Schachermayer, Touzi, Kupper,...
- A direction: From bounded to unbounded, e.g.,
 - L^p: Kaina/Rüschendorf, Acciaio; Orlicz (type) spaces: Cheridito/Li, Arai
 - Abstract Fréchet lattices: Biagini/Frittelli ...
- A "General" Question

How far can we go beyond L^{∞} ?

- usual flow: given a space \mathscr{X} , what ρ 's are possible?
- ours: given a ρ on L^{∞} , what spaces are possible?
 - Starting from a "regular" risk measure ρ^0 on L^{∞} ,
 - extend ρ^0 to as big space \mathscr{X} as possible preserving the regularity.

Question	Main Result
● 00 00000	
General Question	

- well-studied on L[∞] in various aspects: Delbaen, Föllmer, Schied, Kusuoka, Jouini, Schachermayer, Touzi, Kupper,...
- A direction: From bounded to unbounded, e.g.,
 - L^p: Kaina/Rüschendorf, Acciaio; Orlicz (type) spaces: Cheridito/Li, Arai
 - Abstract Fréchet lattices: Biagini/Frittelli ...
- A "General" Question

How far can we go beyond L^{∞} ?

- usual flow: given a space \mathscr{X} , what ρ 's are possible?
- ours: given a ρ on L^{∞} , what spaces are possible?
 - Starting from a "regular" risk measure ρ^0 on L^{∞} ,
 - extend ρ^0 to as big space \mathscr{X} as possible preserving the regularity.

Question	Main Result
0000000	
General Question	

- well-studied on L[∞] in various aspects: Delbaen, Föllmer, Schied, Kusuoka, Jouini, Schachermayer, Touzi, Kupper,...
- A direction: From bounded to unbounded, e.g.,
 - L^p: Kaina/Rüschendorf, Acciaio; Orlicz (type) spaces: Cheridito/Li, Arai
 - Abstract Fréchet lattices: Biagini/Frittelli ...
- A "General" Question

How far can we go beyond L^{∞} ?

- usual flow: given a space \mathscr{X} , what ρ 's are possible?
- ours: given a ρ on L^{∞} , what spaces are possible?
 - Starting from a "regular" risk measure ρ^0 on L^{∞} ,
 - extend ρ^0 to as big space \mathscr{X} as possible preserving the regularity.

Question	Main Result
• 00 00000	
General Question	

- well-studied on L[∞] in various aspects: Delbaen, Föllmer, Schied, Kusuoka, Jouini, Schachermayer, Touzi, Kupper,...
- A direction: From bounded to unbounded, e.g.,
 - L^p: Kaina/Rüschendorf, Acciaio; Orlicz (type) spaces: Cheridito/Li, Arai
 - Abstract Fréchet lattices: Biagini/Frittelli ...
- A "General" Question

How far can we go beyond L^{∞} ?

- usual flow: given a space \mathscr{X} , what ρ 's are possible?
- ours: given a ρ on L^{∞} , what spaces are possible?
 - Starting from a "regular" risk measure ρ^0 on L^{∞} ,
 - extend ρ^0 to as big space \mathscr{X} as possible preserving the regularity.

Maximal Regular Extension of Risk Measure

Some Definitions

→ Ξ →

Convex Risk Measure

$\mathscr{X} \subset L^0$: vector space.

• $\rho : \mathscr{X} \to \mathbb{R} \cup \{+\infty\}$ is a convex risk measure if

(R1) convex: $\rho(\alpha X + (1 - \alpha)Y) \le \alpha \rho(X) + (1 - \alpha)\rho(Y)$ if $\alpha \in (0, 1)$; (R2) monotone: $X \le Y$ as $\Rightarrow \rho(X) \ge \rho(Y)$:

(R3) cash-invariant:
$$\rho(X + \alpha) = \rho(X) - \alpha$$
 if $\alpha \in \mathbb{R}$.

Just a matter of taste! But we prefer convex & increasing functions.

• A couple of normalization:

(R4) $\rho(0) = 0;$

(R5) $\mathbb{P}(A) > 0 \Rightarrow \rho(\alpha \mathbf{1}_A) > 0$ for all $\alpha > 0$.

• If $\mathscr{X} = L^{\infty}$, (R2,3) show $-\|X\|_{\infty} \le \rho(X) \le \|X\|_{\infty}$, hence finite-valued.

- A vector space $\mathscr{X} \subset L^0$ is solid $\Leftrightarrow^{der} |X| \leq |Y| \& Y \in \mathscr{X} \Rightarrow X \in \mathscr{X}$.
 - L^0 is a Riesz space (vector lattice) with the order " \leq , a.s."
 - If \mathscr{X} is solid, then $|X| \in \mathscr{X}$, hence a lattice on its own.

< ロ > < 同 > < 回 > < 回

Convex Risk Function

$\mathscr{X} \subset L^0$: vector space.

• $\rho: \mathscr{X} \to \mathbb{R} \cup \{+\infty\}$ is a convex risk function if

(R1) convex: $\rho(\alpha X + (1 - \alpha)Y) \le \alpha \rho(X) + (1 - \alpha)\rho(Y)$ if $\alpha \in (0, 1)$; (R2) monotone: $X \le Y$ a.s. $\Rightarrow \rho(X) \le \rho(Y)$:

R3) cash-invariant:
$$\rho(X + \alpha) = \rho(X) + \alpha$$
 if $\alpha \in \mathbb{R}$

Just a matter of taste! But we prefer convex & increasing functions.

• A couple of normalization:

(R4) $\rho(0) = 0;$

(R5) $\mathbb{P}(A) > 0 \Rightarrow \rho(\alpha \mathbf{1}_A) > 0$ for all $\alpha > 0$.

• If $\mathscr{X} = L^{\infty}$, (R2,3) show $-\|X\|_{\infty} \le \rho(X) \le \|X\|_{\infty}$, hence finite-valued.

- A vector space $\mathscr{X} \subset L^0$ is solid $\Leftrightarrow^{der} |X| \leq |Y| \& Y \in \mathscr{X} \Rightarrow X \in \mathscr{X}$.
 - L^0 is a Riesz space (vector lattice) with the order " \leq , a.s."
 - If \mathscr{X} is solid, then $|X| \in \mathscr{X}$, hence a lattice on its own.

Convex Risk Function

$\mathscr{X} \subset L^0$: vector space.

• $\rho : \mathscr{X} \to \mathbb{R} \cup \{+\infty\}$ is a convex risk function if

- (R1) convex: $\rho(\alpha X + (1 \alpha)Y) \le \alpha \rho(X) + (1 \alpha)\rho(Y)$ if $\alpha \in (0, 1)$;
- (R2) monotone: $X \leq Y$ a.s. $\Rightarrow \rho(X) \leq \rho(Y)$;
- (R3) cash-invariant: $\rho(X + \alpha) = \rho(X) + \alpha$ if $\alpha \in \mathbb{R}$.

Just a matter of taste! But we prefer convex & increasing functions.

- A couple of normalization:
 - (R4) $\rho(0) = 0$
 - (R5) $\mathbb{P}(A) > 0 \Rightarrow \rho(\alpha \mathbf{1}_A) > 0$ for all $\alpha > 0$.
- If $\mathscr{X} = L^{\infty}$, (R2,3) show $-\|X\|_{\infty} \le \rho(X) \le \|X\|_{\infty}$, hence finite-valued.
- A vector space $\mathscr{X} \subset L^0$ is solid $\Leftrightarrow^{der} |X| \leq |Y| \& Y \in \mathscr{X} \Rightarrow X \in \mathscr{X}$.
 - L^0 is a Riesz space (vector lattice) with the order " \leq , a.s."
 - If \mathscr{X} is solid, then $|X| \in \mathscr{X}$, hence a lattice on its own.

• • • • • • • • • • • • •

Convex Risk Function

$\mathscr{X} \subset L^0$: vector space.

• $\rho: \mathscr{X} \to \mathbb{R} \cup \{+\infty\}$ is a convex risk function if

- (R1) convex: $\rho(\alpha X + (1 \alpha)Y) \le \alpha \rho(X) + (1 \alpha)\rho(Y)$ if $\alpha \in (0, 1)$;
- (R2) monotone: $X \leq Y$ a.s. $\Rightarrow \rho(X) \leq \rho(Y)$;

(R3) cash-invariant:
$$\rho(X + \alpha) = \rho(X) + \alpha$$
 if $\alpha \in \mathbb{R}$.

Just a matter of taste! But we prefer convex & increasing functions.

A couple of normalization:

(R4) $\rho(0) = 0;$ (R5) $\mathbb{P}(A) > 0 \Rightarrow \rho(\alpha \mathbf{1}_A) > 0$ for all $\alpha > 0.$

- If $\mathscr{X} = L^{\infty}$, (R2,3) show $-\|X\|_{\infty} \le \rho(X) \le \|X\|_{\infty}$, hence finite-valued.
- A vector space $\mathscr{X} \subset L^0$ is solid $\Leftrightarrow^{\operatorname{der}} |X| \leq |Y| \& Y \in \mathscr{X} \Rightarrow X \in \mathscr{X}$.
 - L^0 is a Riesz space (vector lattice) with the order " \leq , a.s."
 - If \mathscr{X} is solid, then $|X| \in \mathscr{X}$, hence a lattice on its own.

(日)

Convex Risk Function

$\mathscr{X} \subset L^0$: vector space.

• $\rho: \mathscr{X} \to \mathbb{R} \cup \{+\infty\}$ is a convex risk function if

- (R1) convex: $\rho(\alpha X + (1 \alpha)Y) \le \alpha \rho(X) + (1 \alpha)\rho(Y)$ if $\alpha \in (0, 1)$;
- (R2) monotone: $X \leq Y$ a.s. $\Rightarrow \rho(X) \leq \rho(Y)$;

(R3) cash-invariant:
$$\rho(X + \alpha) = \rho(X) + \alpha$$
 if $\alpha \in \mathbb{R}$.

Just a matter of taste! But we prefer convex & increasing functions.

A couple of normalization:

(R4)
$$\rho(0) = 0;$$

(R5) $\mathbb{P}(A) > 0 \Rightarrow \rho(\alpha \mathbf{1}_A) > 0$ for all $\alpha > 0.$

- If $\mathscr{X} = L^{\infty}$, (R2,3) show $-\|X\|_{\infty} \le \rho(X) \le \|X\|_{\infty}$, hence finite-valued.
- A vector space $\mathscr{X} \subset L^0$ is solid $\stackrel{\text{def}}{\Leftrightarrow} |X| \leq |Y| \& Y \in \mathscr{X} \Rightarrow X \in \mathscr{X}$.
 - L^0 is a Riesz space (vector lattice) with the order " \leq , a.s."
 - If \mathscr{X} is solid, then $|X| \in \mathscr{X}$, hence a lattice on its own.

Regularity Properties: Lebesgue vs Fatou

Fatou : $X_n \to X$ a.s., $|X_n| \le |Y|$, $\exists Y \in \mathscr{X} \Rightarrow \rho(X) \le \liminf_n \rho(X_n)$. Lebesgue : $X_n \to X$ a.s., $|X_n| \le |Y|$, $\exists Y \in \mathscr{X} \Rightarrow \rho(X) = \lim_n \rho(X_n)$.

- If $\mathscr{X} = L^{\infty}$, " $|X_n| \le |Y| \& Y \in L^{\infty}$ " $\Leftrightarrow \sup_n ||X_n||_{\infty} < \infty$, thus
 - Fatou (resp. Lebesgue) ⇔ weak*-lsc (resp. continuity).
 - Lebesgue on $L^{\infty} \Rightarrow$ Fatou on $L^{\infty} \Rightarrow$ "good" dual representation:

$$\rho(X) = \sup_{Q \ll \mathbb{P}} (E_Q[X] - \gamma(Q)), \quad \gamma(Q) := \sup_{X \in L^{\infty}} (E_Q[X] - \rho(X))$$

• Lebesgue seems strong, but at least on L^{∞} ,

(Special Case of) Delbaen (2009, Math. Finance)

If $\rho : L^{\infty} \to \mathbb{R}$ has a finite-valued extension to L^{p} , $\exists p < \infty$ (and $(\Omega, \mathcal{F}, \mathbb{P})$ atomless), ρ has the Lebesgue property on L^{∞} .

• "I" don't know any concrete example that violate this!!

< ロ > < 同 > < 回 > < 回 > < 回 > <

Regularity Properties: Lebesgue vs Fatou

Fatou : $X_n \to X$ a.s., $|X_n| \le |Y|$, $\exists Y \in \mathscr{X} \Rightarrow \rho(X) \le \liminf_n \rho(X_n)$. Lebesgue : $X_n \to X$ a.s., $|X_n| \le |Y|$, $\exists Y \in \mathscr{X} \Rightarrow \rho(X) = \lim_n \rho(X_n)$.

- If $\mathscr{X} = \mathcal{L}^{\infty}$, " $|X_n| \le |Y| \& Y \in \mathcal{L}^{\infty}$ " $\Leftrightarrow \sup_n \|X_n\|_{\infty} < \infty$, thus
 - Fatou (resp. Lebesgue) ⇔ weak*-lsc (resp. continuity).
 - Lebesgue on $L^{\infty} \Rightarrow$ Fatou on $L^{\infty} \Rightarrow$ "good" dual representation:

$$\rho(X) = \sup_{Q \ll \mathbb{P}} (E_Q[X] - \gamma(Q)), \quad \gamma(Q) := \sup_{X \in L^{\infty}} (E_Q[X] - \rho(X))$$

• Lebesgue seems strong, but at least on L^{∞} ,

(Special Case of) Delbaen (2009, Math. Finance)

If $\rho : L^{\infty} \to \mathbb{R}$ has a finite-valued extension to L^{ρ} , $\exists p < \infty$ (and $(\Omega, \mathcal{F}, \mathbb{P})$ atomless), ρ has the Lebesgue property on L^{∞} .

• "I" don't know any concrete example that violate this!!

< D > < P > < E > < E</p>

Regularity Properties: Lebesgue vs Fatou

Fatou : $X_n \to X$ a.s., $|X_n| \le |Y|$, $\exists Y \in \mathscr{X} \Rightarrow \rho(X) \le \liminf_n \rho(X_n)$. Lebesgue : $X_n \to X$ a.s., $|X_n| \le |Y|$, $\exists Y \in \mathscr{X} \Rightarrow \rho(X) = \lim_n \rho(X_n)$.

- If $\mathscr{X} = \mathcal{L}^{\infty}$, " $|X_n| \le |Y| \& Y \in \mathcal{L}^{\infty}$ " $\Leftrightarrow \sup_n ||X_n||_{\infty} < \infty$, thus
 - Fatou (resp. Lebesgue) ⇔ weak*-lsc (resp. continuity).
 - Lebesgue on $L^{\infty} \Rightarrow$ Fatou on $L^{\infty} \Rightarrow$ "good" dual representation:

$$\rho(X) = \sup_{Q \ll \mathbb{P}} (E_Q[X] - \gamma(Q)), \quad \gamma(Q) := \sup_{X \in L^{\infty}} (E_Q[X] - \rho(X))$$

Lebesgue seems strong, but at least on L[∞],

(Special Case of) Delbaen (2009, Math. Finance)

If $\rho : L^{\infty} \to \mathbb{R}$ has a finite-valued extension to L^{p} , $\exists p < \infty$ (and $(\Omega, \mathcal{F}, \mathbb{P})$ atomless), ρ has the Lebesgue property on L^{∞} .

• "I" don't know any concrete example that violate this!!

< D > < P > < P > < P > < P</pre>

Extension of Convex Risk Function

Definition (Regular Extension)

 $\rho: \mathscr{Y} \to \mathbb{R} \cup \{+\infty\}$ is a regular extension of $\rho^0: \mathscr{X} \to \mathbb{R} \cup \{+\infty\}$ iff

- $\mathscr{X} \subset \mathscr{Y}$ and $\rho|_{\mathscr{X}} = \rho^{0}$;
- ρ is Lebesgue on \mathscr{Y} .
- Compatibility: $\mathscr{X} \subset \mathscr{Y}$ & Lebesgue on $\mathscr{Y} \Rightarrow$ on \mathscr{X} .

Example: $\rho(X) = \log E[\exp(X)]$ (entropic risk measure).

- Obviously, this is well-defined with Fatou on L^0 .
- ρ is Lebesgue on $M^{exp} := \{X : E[exp(\alpha|X|)] < \infty, \forall \alpha > 0\}$ (Orlicz heart), but
- NOT on $L^{exp} := \{X : E[exp(\alpha|X|)] < \infty, \exists \alpha > 0\}$ (Orlicz space).

Extension of Convex Risk Function

Definition (Regular Extension)

 $\rho: \mathscr{Y} \to \mathbb{R} \cup \{+\infty\}$ is a regular extension of $\rho^0: \mathscr{X} \to \mathbb{R} \cup \{+\infty\}$ iff

- $\mathscr{X} \subset \mathscr{Y}$ and $\rho|_{\mathscr{X}} = \rho^0$;
- ρ is Lebesgue on \mathscr{Y} .
- Compatibility: $\mathscr{X} \subset \mathscr{Y}$ & Lebesgue on $\mathscr{Y} \Rightarrow$ on \mathscr{X} .

Example: $\rho(X) = \log E[\exp(X)]$ (entropic risk measure).

- Obviously, this is well-defined with Fatou on L^0 .
- ρ is Lebesgue on $M^{exp} := \{X : E[exp(\alpha|X|)] < \infty, \forall \alpha > 0\}$ (Orlicz heart), but
- NOT on $L^{exp} := \{X : E[exp(\alpha|X|)] < \infty, \exists \alpha > 0\}$ (Orlicz space).

Goal of This Talk

Maximal Regular Extension of Risk Measure

イロト イロト イヨト イ

Question ○○○○○●○	Main Result 000000000000	
Problem & Goal		

Given a convex risk function $\rho^0 : L^{\infty} \to \mathbb{R}$ with the Lebesgue prop. on L^{∞} ,

What is the maximal solid $\mathscr{X} \subset L^0$ to which ρ^0 has a regular extension?

• Exists? Unique?? What kind of the space???

Our "philosophy" on the study of risk measures on $\mathscr{X} \supseteq L^{\infty}$

- Usual way: reconstruct a whole theory exactly as did in L^{∞} :
 - characerizing the "order-continuous dual" \mathscr{X}_{n}^{\sim} ,
 - as well as the topology $\sigma(\mathscr{X}, \mathscr{X}_{n}^{\sim}) \leftarrow \text{difficult}$
 - checking $\sigma(\mathscr{X}, \mathscr{X}^{\sim})$ -lsc, obtaining dual representation.....
- But risk measure is "something like a measure",
 - its structure "should be" determined on L^{∞} ,
 - we want to obtain "maximal" results with "minimal" effort.

Question

Lebesgue property

• justifies "approximation by bounded r.v.'s"

$$\rho(X) \stackrel{?}{=} \lim_{N \to \infty} \rho(X \mathbf{1}_{\{|X| \le N\}}) \stackrel{??}{=} \lim_{n \to \infty} \lim_{m \to \infty} \rho(((-n) \lor X) \land m)$$

- Mathematically, this guarantees uniqueness of extension.
- Practically, provide a big toolbox available for computation.
- is stable under inf-convolution:

$$\rho \Box f(X) = \inf_{Y} \{ \rho(X - Y) + f(Y) \}$$

- Risk indifference pricing, asset alocation.
- provide a "good" duality for robust utility maximzation/indifference price:

$$\sup_{\theta} \inf_{P \ll \mathbb{P}} (E_P[U(\theta \cdot S_T + B)] + \gamma(P)) \stackrel{??}{=} \inf_{Q} \text{``certain functional of } Q"$$

- Relatively easy if Q is allowed to be non- σ additive.
- Need a kind of compactness (
 Lebesgue enough, Fatgu is not enough

Lebesgue property

• justifies "approximation by bounded r.v.'s"

$$\rho(X) \stackrel{?}{=} \lim_{N \to \infty} \rho(X \mathbf{1}_{\{|X| \le N\}}) \stackrel{??}{=} \lim_{n \to \infty} \lim_{m \to \infty} \rho(((-n) \lor X) \land m)$$

- Mathematically, this guarantees uniqueness of extension.
- Practically, provide a big toolbox available for computation.
- is stable under inf-convolution:

$$\rho \Box f(X) = \inf_{Y} \{ \rho(X - Y) + f(Y) \}$$

• Risk indifference pricing, asset alocation.

• provide a "good" duality for robust utility maximzation/indifference price:

$$\sup_{\theta} \inf_{P \ll \mathbb{P}} (E_P[U(\theta \cdot S_T + B)] + \gamma(P)) \stackrel{??}{=} \inf_{Q} \text{ ``certain functional of } Q''$$

- Relatively easy if Q is allowed to be non- σ additive.
- Need a kind of compactness (
 Lebesgue enough, Fatqu is not enough

Lebesgue property

justifies "approximation by bounded r.v.'s"

$$\rho(X) \stackrel{?}{=} \lim_{N \to \infty} \rho(X \mathbf{1}_{\{|X| \le N\}}) \stackrel{??}{=} \lim_{n \to \infty} \lim_{m \to \infty} \rho(((-n) \lor X) \land m)$$

- Mathematically, this guarantees uniqueness of extension.
- Practically, provide a big toolbox available for computation.
- is stable under inf-convolution:

$$\rho \Box f(X) = \inf_{Y} \{ \rho(X - Y) + f(Y) \}$$

• Risk indifference pricing, asset alocation.

• provide a "good" duality for robust utility maximzation/indifference price:

$$\sup_{\theta} \inf_{P \ll \mathbb{P}} (E_P[U(\theta \cdot S_T + B)] + \gamma(P)) \stackrel{??}{=} \inf_{Q} \text{ ``certain functional of } Q''$$

- Relatively easy if Q is allowed to be non- σ additive.
- Need a kind of compactness (
 Lebesgue enough, Fatgu is not enough)

Lebesgue property

justifies "approximation by bounded r.v.'s"

$$\rho(X) \stackrel{?}{=} \lim_{N \to \infty} \rho(X \mathbf{1}_{\{|X| \le N\}}) \stackrel{??}{=} \lim_{n \to \infty} \lim_{m \to \infty} \rho(((-n) \lor X) \land m)$$

- Mathematically, this guarantees uniqueness of extension.
- Practically, provide a big toolbox available for computation.
- is stable under inf-convolution:

$$\rho \Box f(X) = \inf_{Y} \{ \rho(X - Y) + f(Y) \}$$

- Risk indifference pricing, asset alocation.
- provide a "good" duality for robust utility maximzation/indifference price:

$$\sup_{\theta} \inf_{P \ll \mathbb{P}} (E_P[U(\theta \cdot S_T + B)] + \gamma(P)) \stackrel{??}{=} \inf_{Q} \text{ ``certain functional of } Q''$$

- Relatively easy if Q is allowed to be non- σ additive.
- Need a kind of compactness (Lebesgue enough, Fatou is not enough)

A Simple Observation

Very simple but crucial observation

Let $\mathscr{X} \subset L^0$ be a solid subspace, and $\rho : \mathscr{X} \to \mathbb{R} \cup \{+\infty\}$ given

• If ρ is Lebesgue on \mathscr{X} , it must satisfy

$$\lim_{N\to\infty}\rho\left(\alpha|X|\mathbf{1}_{\{|X|>N\}}\right)=\mathbf{0},\quad\forall\alpha>\mathbf{0}.$$

- $|\alpha X \mathbf{1}_{\{|X| > N\}}| \le \alpha |X| \in \mathscr{X} \& X \in \mathscr{X} \Rightarrow \alpha X \mathbf{1}_{\{|X| > N\}} \in \mathscr{X} \text{ (since solid)}$
- and obviously $\alpha X \mathbf{1}_{\{|X| > N\}} \to 0$ a.s.
- In particular, ρ must be finite valued on \mathscr{X} : $-\rho(-|X|) \le \rho(|X|) \le \frac{1}{2}(\rho(1|X|\mathbf{1}_{\{|X|>N\}}) + N)$ for some large N.
- Thus ρ^0 can not be regularly extended beyond
 - $\texttt{``}\left\{X \in L^0: \lim_{N \to \infty} \texttt{``}\rho^0\texttt{''}(\alpha |X| \mathbf{1}_{\{|X| > N\}}) = \mathbf{0}, \ \forall \alpha > \mathbf{0}\right\}\texttt{''} \quad \leftarrow \text{ only formal at now}$
 - If " $\rho^0: L^0_+ \to \mathbb{R}$ " is well-defined, this space is solid (clear) & linear since

 $\begin{aligned} |X + Y| \mathbf{1}_{\{|X + Y| > N\}} &\leq (|X| + |Y|) \left(\mathbf{1}_{\{|X| + |Y| > N\} \cap \{|X| > |Y|\}} + \mathbf{1}_{\{|X| + |Y| > N\} \cap \{|X| \le |Y|\}} \right) \\ &\leq 2|X| \mathbf{1}_{\{|X| > N/2\}} + 2|Y| \mathbf{1}_{\{|Y| > N/2\}} \end{aligned}$

Very simple but crucial observation

Let $\mathscr{X} \subset L^0$ be a solid subspace, and $\rho : \mathscr{X} \to \mathbb{R} \cup \{+\infty\}$ given

• If ρ is Lebesgue on \mathscr{X} , it must satisfy

1

$$\lim_{N\to\infty}\rho\left(\alpha|X|\mathbf{1}_{\{|X|>N\}}\right)=0,\quad\forall\alpha>0.$$

- $|\alpha X \mathbf{1}_{\{|X| > N\}}| \le \alpha |X| \in \mathscr{X} \& X \in \mathscr{X} \Rightarrow \alpha X \mathbf{1}_{\{|X| > N\}} \in \mathscr{X} \text{ (since solid)}$
- and obviously $\alpha X \mathbf{1}_{\{|X| > N\}} \to 0$ a.s.
- In particular, ρ must be finite valued on \mathscr{X} : $-\rho(-|X|) \le \rho(|X|) \le \frac{1}{2}(\rho(1|X|1_{\{|X|>N\}}) + N)$ for some large N.
- Thus ρ^0 can not be regularly extended beyond
 - $" \left\{ X \in L^0 : \lim_{N \to \infty} "\rho^0 "(\alpha |X| \mathbf{1}_{\{|X| > N\}}) = 0, \ \forall \alpha > 0 \right\} " \quad \leftarrow \text{ only formal at now}$
 - If " $\rho^0 : L^0_+ \to \mathbb{R}$ " is well-defined, this space is solid (clear) & linear since

$$\begin{aligned} |X + Y| \mathbf{1}_{\{|X + Y| > N\}} &\leq (|X| + |Y|) \left(\mathbf{1}_{\{|X| + |Y| > N\} \cap \{|X| > |Y|\}} + \mathbf{1}_{\{|X| + |Y| > N\} \cap \{|X| \leq |Y|\}} \right) \\ &\leq \mathbf{2} |X| \mathbf{1}_{\{|X| > N/2\}} + \mathbf{2} |Y| \mathbf{1}_{\{|Y| > N/2\}} \end{aligned}$$

Main Result ○○●○○○○○○○○○

Suppose $\rho^0: L^{\infty} \to \mathbb{R}$ has Lebesuge (hence Fatou) then,

$$\rho^{0}(X) = \sup_{Q \in \mathcal{Q}_{Y}} (E_{Q}[X] - \gamma(Q)), \quad X \in L^{\infty}$$

$$\gamma(\boldsymbol{Q}) := \sup_{\boldsymbol{X} \in L^{\infty}} (\boldsymbol{E}_{\boldsymbol{Q}}[\boldsymbol{X}] - \rho^{0}(\boldsymbol{X})), \ \boldsymbol{\mathcal{Q}}_{\boldsymbol{\gamma}} := \{\boldsymbol{Q} \ll \mathbb{P} : \boldsymbol{\gamma}(\boldsymbol{Q}) < \infty\}$$

● This expression makes sense far beyond L[∞]. Define

$$\hat{\rho}(X) := \sup_{Q \in \mathcal{Q}_{\gamma}} (E_Q[X] - \gamma(Q)), \ X \in \mathcal{D}_{\gamma} := \{ X \in L^0 : X^- \in \bigcap_{Q \in \mathcal{Q}_{\gamma}} L^1(Q) \}$$

- \mathcal{D}_{γ} is not linear, but a convex cone with $L^0_+ \subset \mathcal{D}_{\gamma}$.
- $\hat{\rho}$ is convex, monotone, cash-invariant (i.e., a "convex risk function" on \mathcal{D}_{γ}).
- $\hat{\rho}|_{L^{\infty}} = \rho^0 \ (\Rightarrow \hat{\rho}(0) = 0 \text{ and sensitive}).$

Now the following makes sense

$$M_{u}^{\hat{\rho}} := \left\{ X \in \boldsymbol{L}^{0} : \lim_{N \to \infty} \hat{\rho} \left(\alpha | X | \mathbf{1}_{\{|X| > N\}} \right) = 0, \, \forall \alpha > 0 \right\}$$

• From prev. arguments, $L^{\infty} \subset M_u^{\hat{\rho}}$ and $M_u^{\hat{\rho}}$ is a solid subspace

Main Result ○○●○○○○○○○○○○

Suppose $\rho^0: L^{\infty} \to \mathbb{R}$ has Lebesuge (hence Fatou) then,

$$\rho^{0}(X) = \sup_{Q \in \mathcal{O}_{Y}} (E_{Q}[X] - \gamma(Q)), \quad X \in L^{\infty}$$

$$\gamma(\boldsymbol{Q}) := \sup_{\boldsymbol{X} \in L^{\infty}} (\boldsymbol{E}_{\boldsymbol{Q}}[\boldsymbol{X}] - \rho^{0}(\boldsymbol{X})), \ \boldsymbol{Q}_{\boldsymbol{\gamma}} := \{\boldsymbol{Q} \ll \mathbb{P} : \boldsymbol{\gamma}(\boldsymbol{Q}) < \infty\}$$

This expression makes sense far beyond L[∞]. Define

$$\hat{\rho}(X) := \sup_{Q \in \mathcal{Q}_{\gamma}} (E_Q[X] - \gamma(Q)), \ X \in \mathcal{D}_{\gamma} := \{ X \in L^0 : X^- \in \bigcap_{Q \in \mathcal{Q}_{\gamma}} L^1(Q) \}$$

- \mathcal{D}_{γ} is not linear, but a convex cone with $L^{0}_{+} \subset \mathcal{D}_{\gamma}$.
- $\hat{\rho}$ is convex, monotone, cash-invariant (i.e., a "convex risk function" on \mathcal{D}_{γ}).
- $\hat{\rho}|_{L^{\infty}} = \rho^0 \ (\Rightarrow \hat{\rho}(0) = 0 \text{ and sensitive}).$

Now the following makes sense

$$M_{u}^{\hat{\rho}} := \left\{ X \in \boldsymbol{L}^{0} : \lim_{N \to \infty} \hat{\rho} \left(\alpha |X| \mathbf{1}_{\{|X| > N\}} \right) = 0, \, \forall \alpha > 0 \right\}$$

• From prev. arguments, $L^{\infty} \subset M_u^{\hat{\rho}}$ and $M_u^{\hat{\rho}}$ is a solid subspace

Main Result ○○●○○○○○○○○○○

Suppose $\rho^0: L^{\infty} \to \mathbb{R}$ has Lebesuge (hence Fatou) then,

$$\rho^{0}(X) = \sup_{Q \in \mathcal{Q}_{Y}} (E_{Q}[X] - \gamma(Q)), \quad X \in L^{\infty}$$

$$\gamma(\boldsymbol{Q}) := \sup_{\boldsymbol{X} \in L^{\infty}} (\boldsymbol{E}_{\boldsymbol{Q}}[\boldsymbol{X}] - \rho^{0}(\boldsymbol{X})), \ \boldsymbol{Q}_{\boldsymbol{\gamma}} := \{\boldsymbol{Q} \ll \mathbb{P} : \boldsymbol{\gamma}(\boldsymbol{Q}) < \infty\}$$

This expression makes sense far beyond L[∞]. Define

$$\hat{\rho}(X) := \sup_{Q \in \mathcal{Q}_{\gamma}} (E_Q[X] - \gamma(Q)), \ X \in \mathcal{D}_{\gamma} := \{ X \in L^0 : X^- \in \bigcap_{Q \in \mathcal{Q}_{\gamma}} L^1(Q) \}$$

- D_γ is not linear, but a convex cone with L⁰₊ ⊂ D_γ.
- $\hat{\rho}$ is convex, monotone, cash-invariant (i.e., a "convex risk function" on \mathcal{D}_{γ}).
- $\hat{\rho}|_{L^{\infty}} = \rho^0 \ (\Rightarrow \hat{\rho}(0) = 0 \text{ and sensitive}).$

Now the following makes sense

$$M_{u}^{\hat{\rho}} := \left\{ X \in L^{0} : \lim_{N \to \infty} \hat{\rho} \left(\alpha |X| \mathbf{1}_{\{|X| > N\}} \right) = 0, \ \forall \alpha > 0 \right\}$$

• From prev. arguments, $L^{\infty} \subset M_u^{\hat{\rho}}$ and $M_u^{\hat{\rho}}$ is a solid subspace

$\|X\| := \inf\{\lambda > 0: \ \hat{ ho}(|X|/\lambda) \le 1\} \quad \leftarrow$ gauge, Minkowski func.

Easy to observe:

- $\|\cdot\|$ is a seminorm \leftarrow standard in Orlicz space theory
- $|X| \le |Y| \Rightarrow ||X|| \le ||Y||$, i.e. $|| \cdot ||$ is a lattice seminorm
- $||X|| < \infty \Leftrightarrow \hat{\rho}(\alpha|X|) < \infty, \exists \alpha > 0 \Leftarrow \cdots \forall \alpha > 0 \Leftarrow X \in M_{u}^{\hat{\rho}}$ • " \Rightarrow " clear. " \Leftarrow ": $\hat{\rho}(\varepsilon\alpha|X|) = \hat{\rho}(\varepsilon\alpha|X| + (1 - \varepsilon)0) \le \varepsilon\hat{\rho}(\alpha|X|) \downarrow 0$.

An Elementary Inequality

 $\|X\|_{L^1(Q)} \le (1+\gamma(Q))\|X\|, \,\forall Q \ll \mathbb{P}.$

- $||X|| = 0 \Rightarrow ||X||_{L^1(Q_0)} = 0 \Leftrightarrow X = 0 \text{ a.s.} \rightarrow ||\cdot|| \text{ is a norm}$ • (R5) (sensitivity) $\Leftrightarrow \exists Q_0 \sim \mathbb{P}, \gamma(Q_0) < \infty.$
- $M_u^{\hat{\rho}} \subset \bigcap_{Q \in Q_{\gamma}} L^1(Q) = \mathcal{D}_{\gamma} \cap (-\mathcal{D}_{\gamma}) \Rightarrow \hat{\rho}$ is well-defined on $M_u^{\hat{\rho}}$
- Also, $-\infty < \hat{\rho}(X) \le \hat{\rho}(|X|) < \infty$, hence $\hat{\rho}$ is finite valued on M_{L}^{ℓ}

 $\|X\| := \inf\{\lambda > 0 : \hat{\rho}(|X|/\lambda) \le 1\} \quad \leftarrow \text{gauge, Minkowski func.}$

Easy to observe:

- $\|\cdot\|$ is a seminorm \leftarrow standard in Orlicz space theory
- $|X| \le |Y| \Rightarrow ||X|| \le ||Y||$, i.e. $||\cdot||$ is a lattice seminorm

•
$$||X|| < \infty \Leftrightarrow \hat{\rho}(\alpha|X|) < \infty, \exists \alpha > 0 \Leftarrow \cdots \forall \alpha > 0 \Leftarrow X \in M_{\mu}^{\hat{\rho}}$$

• "\Rightarrow clear. "\Lapha": $\hat{\rho}(\epsilon \alpha|X|) = \hat{\rho}(\epsilon \alpha|X| + (1 - \epsilon)0) \le \epsilon \hat{\rho}(\alpha|X|) \downarrow 0$.

An Elementary Inequality

 $\|X\|_{L^1(Q)} \le (1+\gamma(Q))\|X\|, \,\forall Q \ll \mathbb{P}.$

- $||X|| = 0 \Rightarrow ||X||_{L^1(Q_0)} = 0 \Leftrightarrow X = 0 \text{ a.s.} \rightarrow ||\cdot|| \text{ is a norm}$ • (R5) (sensitivity) $\Leftrightarrow \exists Q_0 \sim \mathbb{P}, \gamma(Q_0) < \infty.$
- $M_u^{\hat{\rho}} \subset \bigcap_{Q \in Q_{\gamma}} L^1(Q) = \mathcal{D}_{\gamma} \cap (-\mathcal{D}_{\gamma}) \Rightarrow \hat{\rho}$ is well-defined on $M_u^{\hat{\rho}}$
- Also, $-\infty < \hat{\rho}(X) \le \hat{\rho}(|X|) < \infty$, hence $\hat{\rho}$ is finite valued on $M_{\mu}^{\hat{\rho}}$

 $\|X\| := \inf\{\lambda > 0: \ \hat{\rho}(|X|/\lambda) \le 1\} \quad \leftarrow \text{gauge, Minkowski func.}$

Easy to observe:

- $\|\cdot\|$ is a seminorm \leftarrow standard in Orlicz space theory
- $|X| \le |Y| \Rightarrow ||X|| \le ||Y||$, i.e. $|| \cdot ||$ is a lattice seminorm

•
$$||X|| < \infty \Leftrightarrow \hat{\rho}(\alpha|X|) < \infty, \exists \alpha > 0 \Leftarrow \cdots \forall \alpha > 0 \Leftarrow X \in M_u^{\hat{\rho}}$$

• "\Rightarrow clear. "\equiv \heta': $\hat{\rho}(\epsilon \alpha|X|) = \hat{\rho}(\epsilon \alpha|X| + (1 - \epsilon)0) < \epsilon \hat{\rho}(\alpha|X|) \downarrow 0$.

An Elementary Inequality

 $\|X\|_{L^1(Q)} \leq (1 + \gamma(Q))\|X\|, \, \forall Q \ll \mathbb{P}.$

•
$$||X|| = 0 \Rightarrow ||X||_{L^{1}(Q_{0})} = 0 \Leftrightarrow X = 0 \text{ a.s.} \rightarrow ||\cdot|| \text{ is a norm}$$

• (R5) (sensitivity) $\Leftrightarrow \exists Q_{0} \sim \mathbb{P}, \gamma(Q_{0}) < \infty.$
• $M_{u}^{\hat{\rho}} \subset \bigcap_{Q \in Q_{\gamma}} L^{1}(Q) = \mathcal{D}_{\gamma} \cap (-\mathcal{D}_{\gamma}) \Rightarrow \hat{\rho} \text{ is well-defined on } M_{u}^{\hat{\rho}}$
• Also, $-\infty < \hat{\rho}(X) \le \hat{\rho}(|X|) < \infty$, hence $\hat{\rho}$ is finite valued on $M_{u}^{\hat{\rho}}$.

Main Result

Maximal Regular Extension of Risk Measure

- ₹ 🖬 🕨

$$M_{u}^{\hat{\rho}} = \{ X \in L^{0} : \lim_{N} \hat{\rho} \left(\alpha |X| \mathbf{1}_{\{|X| > N\}} \right) = 0, \ \forall \alpha > 0 \}, \ \|X\| = \inf\{ \lambda > 0 : \ \hat{\rho}(|X|/\lambda) \le 1 \}$$

Theorem 1 ($M_u^{\hat{\rho}}$ is the maximum solid space admitting a <u>regular extension</u>)

- $(M_u^{\rho}, \|\cdot\|)$ is an order-continuous Banach lattice, i.e.,
 - $(M_u^{\rho}, \|\cdot\|)$ is a Banach space and $\|\cdot\|$ satisfies $|X| \le |Y| \Rightarrow \|X\| \le \|Y\|$,
 - X → ||X|| has Lebesgue (order-continuous):

$$X_n \to 0 \text{ a.s. } \& \exists Y \in M_u^{\hat{\rho}}, \ |X_n| \le |Y| \Rightarrow \lim_n \|X_n\| = 0. \tag{*}$$

($\hat{\rho}, M_u^{\hat{\rho}}$) is a regular extension of ρ^0 , and if (ρ, \mathscr{X}) is such $(\mathscr{X} \text{ solid})$, $\mathscr{X} \subset M_u^{\hat{\rho}}$ and $\rho = \hat{\rho}$ on \mathscr{X}

Given ①, Lebesgue prop. of ρ̂ follows from an extended Namioka-Klee:
 ∀ monotone convex function f on a Banach lattice is norm conti. on int dom(f).
 ρ̂ is finite, monotone, convex & || · || has Lebesgue ⇒ ρ̂ has the Lebesgue.

$$M_{u}^{\hat{\rho}} = \{X \in L^{0} : \lim_{N} \hat{\rho} \left(\alpha |X| \mathbf{1}_{\{|X| > N\}} \right) = 0, \ \forall \alpha > 0\}, \ \|X\| = \inf\{\lambda > 0 : \ \hat{\rho}(|X|/\lambda) \le 1\}$$

Theorem 1 (M_u^{ρ} is the maximum solid space admitting a regular extension)

- $(M_u^{\hat{\rho}}, \|\cdot\|)$ is an order-continuous Banach lattice, i.e.,
 - $(M_u^{\hat{\rho}}, \|\cdot\|)$ is a Banach space and $\|\cdot\|$ satisfies $|X| \le |Y| \Rightarrow \|X\| \le \|Y\|$,
 - $X \mapsto ||X||$ has Lebesgue (order-continuous):

$$X_n \to 0 \text{ a.s. } \& \exists Y \in M_u^{\hat{\rho}}, |X_n| \le |Y| \Rightarrow \lim_n \|X_n\| = 0.$$
 (*)

($\hat{\rho}, M_u^{\hat{\rho}}$) is a regular extension of ρ^0 , and if (ρ, \mathscr{X}) is such $(\mathscr{X} \text{ solid})$, $\mathscr{X} \subset M_u^{\hat{\rho}}$ and $\rho = \hat{\rho}$ on \mathscr{X}

- Given ①, Lebesgue prop. of
 p follows from an extended Namioka-Klee:
 ∀ monotone convex function f on a Banach lattice is norm conti. on int dom(f).
 - $\hat{\rho}$ is finite, monotone, convex & $\|\cdot\|$ has Lebesgue $\Rightarrow \hat{\rho}$ has the Lebesgue.

$\hat{\rho}(\alpha|X|\mathbf{1}_{\{|X|>N\}})\downarrow \mathbf{0},\,\forall \alpha>\mathbf{0}\Leftrightarrow \|X\mathbf{1}_{\{|X|>N\}}\|\downarrow \mathbf{0}\Leftrightarrow \|X\mathbf{1}_{A_n}\|\downarrow \mathbf{0}\;(\mathbb{P}(A_n)\downarrow \mathbf{0}).$

- $M_u^{\hat{\rho}}$ is complete w.r.t. $\|\cdot\|$: let $(X_n) \subset M_u^{\hat{\rho}}, X \in L^0, \|X X_n\| \to 0.$
 - $X \in M_{\mathcal{U}}^{\hat{\rho}}$: $||X1_{\{|X|>N\}}|| \le ||X-X_{n}|| + ||X_{n}1_{\{|X|>N\}}||$. $X_{n} \in M_{\mathcal{U}}^{\hat{\rho}} \& \mathbb{P}(|X|>N) \downarrow 0$
- $\|\cdot\|$ is order-continuous: $X_n \to 0$ a.s. & $\exists Y \in M_u^{\hat{\rho}}, |X_n| \le |Y| \Rightarrow$

 $||X_n|| \le ||Y1_{\{|Y| > N\}}|| + |||X_n| \land N|| \qquad |X_n| \land N \xrightarrow{n} 0 \& ||X_n| \land N||_{\infty} \le N.$

• Lebesgue prop. of ρ^0 on L^∞ implies Lebesgue of $\|\cdot\|$ on L^∞ .

- Uniqueness & Maximality: Let $\rho : \mathscr{X} \to \mathbb{R}$ Lebesgue (\mathscr{X} solid).
 - $\hat{\rho} = \rho$ on $M_{U}^{\hat{\rho}} \cap \mathscr{X}$ (easy). For $\mathscr{X} \subset M_{U}^{\hat{\rho}}$, $(\rho(\alpha|X|1_{\{|X|>N\}}) \downarrow 0 \Rightarrow \hat{\rho}(\cdots) \downarrow 0)$

 $\hat{\rho}(\alpha|X|\mathbf{1}_{\{|X|>N\}}) = \sup_{n} \hat{\rho}(\alpha|X|\mathbf{1}_{\{n\geq|X|>N\}}) = \sup_{n} \rho(\cdots)$

 $\hat{\rho}(X) = \sup_{Q \in Q_{\gamma}} (E_Q[X] - \gamma(Q)) \text{ is conti. below on } L^0_+ : 0 \le X_n \uparrow X \text{ a.s.} \Rightarrow$

 $\hat{\rho}(X) = \sup_{Q} \sup_{n} (E_{Q}[X_{n}] - \gamma(Q)) = \sup_{n} \sup_{Q} (\cdots) = \sup_{n} \hat{\rho}(X_{n})$

• • • • • • • • • • • • •

 $\hat{\rho}(\alpha|X|\mathbf{1}_{\{|X|>N\}})\downarrow 0, \,\forall \alpha>0 \Leftrightarrow \|X\mathbf{1}_{\{|X|>N\}}\|\downarrow 0 \Leftrightarrow \|X\mathbf{1}_{A_n}\|\downarrow 0 \ (\mathbb{P}(A_n)\downarrow 0).$

- $M_{u}^{\hat{\rho}}$ is complete w.r.t. $\|\cdot\|$: let $(X_{n}) \subset M_{u}^{\hat{\rho}}, X \in L^{0}, \|X X_{n}\| \to 0.$ • $X \in M_{u}^{\hat{\rho}}$: $\|X\mathbf{1}_{\{|X| > N\}}\| \le \|X - X_{n}\| + \|X_{n}\mathbf{1}_{\{|X| > N\}}\|$. $X_{n} \in M_{u}^{\hat{\rho}} \& \mathbb{P}(|X| > N) \downarrow 0$
- $\|\cdot\|$ is order-continuous: $X_n \to 0$ a.s. $\& \exists Y \in M_u^{\hat{\rho}}, |X_n| \le |Y| \Rightarrow$

 $||X_n|| \le ||Y1_{\{|Y| > N\}}|| + |||X_n| \land N|| \qquad |X_n| \land N \xrightarrow{n} 0 \& ||X_n| \land N||_{\infty} \le N.$

• Lebesgue prop. of ρ^0 on L^∞ implies Lebesgue of $\|\cdot\|$ on L^∞ .

- Uniqueness & Maximality: Let $\rho : \mathscr{X} \to \mathbb{R}$ Lebesgue (\mathscr{X} solid).
 - $\hat{\rho} = \rho$ on $M_{U}^{\hat{\rho}} \cap \mathscr{X}$ (easy). For $\mathscr{X} \subset M_{U}^{\hat{\rho}}$, $(\rho(\alpha|X|1_{\{|X|>N\}}) \downarrow 0 \Rightarrow \hat{\rho}(\cdots) \downarrow 0)$

 $\hat{\rho}(\alpha|X|\mathbf{1}_{\{|X|>N\}}) = \sup_{n} \hat{\rho}(\alpha|X|\mathbf{1}_{\{n\geq|X|>N\}}) = \sup_{n} \rho(\cdots)$

 $\hat{\rho}(X) = \sup_{Q \in Q_{\gamma}} (E_Q[X] - \gamma(Q)) \text{ is conti. below on } L^0_+ : 0 \le X_n \uparrow X \text{ a.s.} \Rightarrow$

 $\hat{\rho}(X) = \sup_{Q} \sup_{n} (E_{Q}[X_{n}] - \gamma(Q)) = \sup_{n} \sup_{Q} (\cdots) = \sup_{n} \hat{\rho}(X_{n})$

• • • • • • • • • • • • •

 $\hat{\rho}(\alpha|X|\mathbf{1}_{\{|X|>N\}})\downarrow 0, \,\forall \alpha>0 \Leftrightarrow \|X\mathbf{1}_{\{|X|>N\}}\|\downarrow 0 \Leftrightarrow \|X\mathbf{1}_{A_n}\|\downarrow 0 \ (\mathbb{P}(A_n)\downarrow 0).$

- $M_u^{\hat{\rho}}$ is complete w.r.t. $\|\cdot\|$: let $(X_n) \subset M_u^{\hat{\rho}}, X \in L^0, \|X X_n\| \to 0.$
 - $X \in M_u^{\hat{\rho}}$: $||X1_{\{|X|>N\}}|| \le ||X-X_n|| + ||X_n1_{\{|X|>N\}}||$. $X_n \in M_u^{\hat{\rho}} \& \mathbb{P}(|X|>N) \downarrow 0$
- $\|\cdot\|$ is order-continuous: $X_n \to 0$ a.s. & $\exists Y \in M_u^{\hat{\rho}}, |X_n| \le |Y| \Rightarrow$

 $\|X_n\| \leq \|Y\mathbf{1}_{\{|Y| > N\}}\| + \||X_n| \wedge N\| \qquad |X_n| \wedge N \xrightarrow{n} 0 \& \||X_n| \wedge N\|_{\infty} \leq N.$

• Lebesgue prop. of ρ^0 on L^∞ implies Lebesgue of $\|\cdot\|$ on L^∞ .

- Uniqueness & Maximality: Let $\rho : \mathscr{X} \to \mathbb{R}$ Lebesgue (\mathscr{X} solid).
 - $\hat{\rho} = \rho$ on $M_{\mathcal{U}}^{\hat{\rho}} \cap \mathscr{X}$ (easy). For $\mathscr{X} \subset M_{\mathcal{U}}^{\hat{\rho}}$, $(\rho(\alpha|X|1_{\{|X|>N\}}) \downarrow 0 \Rightarrow \hat{\rho}(\cdots) \downarrow 0)$

 $\hat{\rho}(\alpha|X|\mathbf{1}_{\{|X|>N\}}) = \sup_{n} \hat{\rho}(\alpha|X|\mathbf{1}_{\{n\geq|X|>N\}}) = \sup_{n} \rho(\cdots)$

 $\hat{\rho}(X) = \sup_{Q \in Q_{\gamma}} (E_Q[X] - \gamma(Q)) \text{ is conti. below on } L^0_+ : 0 \le X_n \uparrow X \text{ a.s.} \Rightarrow$

 $\hat{\rho}(X) = \sup_{Q} \sup_{n} (E_{Q}[X_{n}] - \gamma(Q)) = \sup_{n} \sup_{Q} (\cdots) = \sup_{n} \hat{\rho}(X_{n})$

 $\hat{\rho}(\alpha|X|\mathbf{1}_{\{|X|>N\}})\downarrow 0, \,\forall \alpha>0 \Leftrightarrow \|X\mathbf{1}_{\{|X|>N\}}\|\downarrow 0 \Leftrightarrow \|X\mathbf{1}_{A_n}\|\downarrow 0 \ (\mathbb{P}(A_n)\downarrow 0).$

- $M_u^{\hat{\rho}}$ is complete w.r.t. $\|\cdot\|$: let $(X_n) \subset M_u^{\hat{\rho}}, X \in L^0, \|X X_n\| \to 0.$
 - $X \in M_u^{\hat{\rho}}$: $||X1_{\{|X|>N\}}|| \le ||X-X_n|| + ||X_n1_{\{|X|>N\}}||$. $X_n \in M_u^{\hat{\rho}} \& \mathbb{P}(|X|>N) \downarrow 0$
- $\|\cdot\|$ is order-continuous: $X_n \to 0$ a.s. & $\exists Y \in M_u^{\hat{\rho}}, |X_n| \le |Y| \Rightarrow$

 $\|X_n\| \leq \|Y\mathbf{1}_{\{|Y| > N\}}\| + \||X_n| \wedge N\| \qquad |X_n| \wedge N \xrightarrow{n} 0 \& \||X_n| \wedge N\|_{\infty} \leq N.$

- Lebesgue prop. of ρ^0 on L^∞ implies Lebesgue of $\|\cdot\|$ on L^∞ .
- Uniqueness & Maximality: Let $\rho : \mathscr{X} \to \mathbb{R}$ Lebesgue (\mathscr{X} solid).
 - $\hat{\rho} = \rho \text{ on } M_u^{\hat{\rho}} \cap \mathscr{X} \text{ (easy). For } \mathscr{X} \subset M_u^{\hat{\rho}}, (\rho(\alpha|X|1_{\{|X|>N\}}) \downarrow 0 \Rightarrow \hat{\rho}(\cdots) \downarrow 0)$

$$\hat{\rho}(\alpha|X|\mathbf{1}_{\{|X|>N\}}) = \sup_{n} \hat{\rho}(\alpha|X|\mathbf{1}_{\{n\geq|X|>N\}}) = \sup_{n} \rho(\cdots)$$

 $\hat{\rho}(X) = \sup_{Q \in \mathcal{Q}_{\gamma}} (E_Q[X] - \gamma(Q)) \text{ is conti. below on } L^0_+ : 0 \le X_n \uparrow X \text{ a.s.} \Rightarrow$

 $\hat{\rho}(X) = \sup_{Q} \sup_{n} (E_{Q}[X_{n}] - \gamma(Q)) = \sup_{n} \sup_{Q} (\cdots) = \sup_{n} \hat{\rho}(X_{n})$

Why subscript "u"?

► < Ξ >

Analogy to Orlicz-Type Spaces

•
$$M^{\hat{\rho}} := \{ X \in L^0 : \rho(\alpha|X|) < \infty, \forall \alpha > 0 \} \leftarrow \text{``Orlicz heart''}.$$

•
$$M_{u}^{\hat{\rho}} \subset M^{\hat{\rho}} \subset L^{\hat{\rho}} := \{X \in L^{0} : \rho(\alpha|X|) < \infty, \exists \alpha > 0\} \leftarrow$$
 "Orlicz space"

• Example (entropic case) : $\rho(X) = \log E[\exp(X)]$. In this case

$$M^{\hat{\rho}} = M^{\exp} := \{X : E[\exp(\alpha |X|)] < \infty, \forall \alpha\} = M_{L}^{\hat{\rho}}$$
$$L^{\hat{\rho}} = L^{\exp} := \{X : E[\exp(\alpha |X|)] < \infty, \exists \alpha\}.$$

• A Question: always $M_u^{\hat{\rho}} \stackrel{??}{=} M^{\hat{\rho}}$? NO!!!

$$\Omega = \mathbb{N}, P_1(\{1\}) = 1, P_n(\{1\}) = 1 - \frac{1}{n}, P_n(\{n\}) = \frac{1}{n}, \mathcal{P} := \overline{\text{conv}}(P_n : n \in \mathbb{N})$$

 $\rho(X) = \sup_{P \in \mathcal{P}} E_P[X] = \sup_n E_{P_n}[X] \quad (\text{if } X \ge 0) \quad \leftarrow \text{ coherent} \\ \leftarrow \gamma(Q) = 0 \text{ if } Q \in \mathcal{P}, = +\infty \text{ if not; } \mathcal{P} \text{ compact} \Leftrightarrow \text{ Lebesgue.}$

• Take X(n) = n. Then

• $E_{P_n}[X] = 2 - 1/n \Rightarrow \sup_n E_{P_n}[X] = 2 < \infty$ hence $X \in M^{\hat{\rho}}$.

• BUT $E_{P_n}[X1_{\{X>N\}}] = 1_{\{n>N\}} \Rightarrow \sup_n E_{P_n}[X1_{\{X>N\}}] \equiv 1 \Rightarrow X \notin M_u^{\rho}$

Analogy to Orlicz-Type Spaces

•
$$M^{\hat{\rho}} := \{ X \in L^0 : \rho(\alpha|X|) < \infty, \forall \alpha > 0 \} \leftarrow \text{``Orlicz heart''}.$$

•
$$M_{U}^{\hat{\rho}} \subset M^{\hat{\rho}} \subset L^{\hat{\rho}} := \{X \in L^{0} : \rho(\alpha|X|) < \infty, \exists \alpha > 0\} \leftarrow$$
 "Orlicz space"

• Example (entropic case) : $\rho(X) = \log E[\exp(X)]$. In this case

$$M^{\hat{\rho}} = M^{\exp} := \{X : E[\exp(\alpha |X|)] < \infty, \forall \alpha\} = M_{L}^{\hat{\rho}}$$
$$L^{\hat{\rho}} = L^{\exp} := \{X : E[\exp(\alpha |X|)] < \infty, \exists \alpha\}.$$

• A Question: always
$$M_u^{\hat{\rho}} \stackrel{??}{=} M^{\hat{\rho}}$$
? NO!!!

$$\Omega = \mathbb{N}, P_1(\{1\}) = 1, P_n(\{1\}) = 1 - \frac{1}{n}, P_n(\{n\}) = \frac{1}{n}, \mathcal{P} := \overline{\text{conv}}(P_n : n \in \mathbb{N})$$

$$\rho(X) = \sup_{P \in \mathcal{P}} E_P[X] = \sup_{n} E_{P_n}[X] \quad (\text{if } X \ge 0) \quad \leftarrow \text{ coherent} \\ \leftarrow \gamma(Q) = 0 \text{ if } Q \in \mathcal{P}, = +\infty \text{ if not; } \mathcal{P} \text{ compact} \Leftrightarrow \text{ Lebesgue.}$$

• Take
$$X(n) = n$$
. Then

•
$$E_{P_n}[X] = 2 - 1/n \Rightarrow \sup_n E_{P_n}[X] = 2 < \infty$$
 hence $X \in M^{\hat{\rho}}$.

• BUT $E_{P_n}[X1_{\{X>N\}}] = 1_{\{n>N\}} \Rightarrow \sup_n E_{P_n}[X1_{\{X>N\}}] \equiv 1 \Rightarrow X \notin M_u^{\hat{\rho}}$

Theorem 2 ($M_u^{\hat{\rho}} = "M^{\hat{\rho}} + \text{Uniform Integrability"}$)

- For $X \in M^{\hat{\rho}}$, TFAE:
 - $X \in M^{\hat{\rho}}_{\boldsymbol{u}};$
 - $\{ X dQ/d\mathbb{P} : \gamma(Q) \le \beta \} \text{ is UI, } \forall \beta > 0.$ $\leftarrow \text{ thus "}u"$
 - **③** \forall **Y** ∈ L^{∞} , sup_{*Q*∈*Q*_{*γ*}(E_Q [**Y**X] − *γ*(*Q*)) is attained.}
 - 1 ⇒ 2 ⇒ 3: easy; 2 ⇒ 1: a "clever" use of a minimax.
 3 ⇒ 2: a perturbed James's theorem:

Orihuela-Ruiz Galán 12

E: Banach, $f : E \to \mathbb{R} \cup \{+\infty\}$ coercive: $\lim_{\|x\|\to\infty} f(x)/\|x\| = +\infty$. Then

 $\sup_{x \in E} (\langle x, I \rangle - f(x)) \text{ is attained } \forall I \in E^* \Rightarrow \{x : f(x) \le \alpha\} \text{ is weakly rel. compact}$

• cf James: weakly closed & bounded $C \subset E$ (Banach) is weakly compact iff

 $\sup_{x \in C} \langle x, l \rangle = \sup_{x \in E} (\langle x, l \rangle - \frac{\delta_C(x)}{\varepsilon}) \text{ is attained } \forall l \in E^* \quad (C = \{x : \delta_C(x) \le 1\})$

An Application "Lebesgue=Max=Compact" Theorem

Application: a convenient extension of JST theorem

- Jouini-Schachermayer-Touzi, Delbaen: For $\rho: L^{\infty} \to \mathbb{R}$ with Fatou, AE:
 - ρ has the Lebesgue property;
 - 2 $\{Q : \gamma(Q) \le \alpha\}$ is weakly compact in L^1 ;
 - 3 $\sup_Q(E_Q[X] \gamma(Q))$ is attained.

• Orihuela-Ruiz Galán12: Same but with (L^{Ψ}, M^{Ψ^*}) instead of (L^{∞}, L^1) .

Corollary: Analogue of JST for solid \mathscr{X} (Dom = UI)

 $\rho: \mathscr{X} \to \mathbb{R}, \mathscr{X}$ solid, $\rho|_{L^{\infty}}$ has Fatou. Then AE

- ρ has Lebesgue on \mathscr{X} ;
- $(\mathbf{X} dQ/d\mathbb{P} : \gamma_{\infty}(Q) \leq \alpha) \text{ is UI, } \forall X \in \mathcal{X}; \leftarrow \gamma_{\infty}(Q) = \sup_{X \in L^{\infty}} (E_Q[X] \rho(X))$
- ^⑤ sup_{γ∞(Q)<∞}($E_Q[X] γ_∞(Q)$) is attained ∀X ∈ 𝔅.
 - All Orlicz spaces & hearts, L^p with $p \in [0, \infty]$ are solid.
 - No (weak & weak*) topology of *X* involved!! ← very very hard (for me)!!
 - Don't need to understand what's "σ(X, X*)-compact"!!

∃ ► < ∃ ►</p>

Question	

Application: a convenient extension of JST theorem

- Jouini-Schachermayer-Touzi, Delbaen: For $\rho: L^{\infty} \to \mathbb{R}$ with Fatou, AE:
 - ρ has the Lebesgue property;
 - 2 { $Q: \gamma(Q) \le \alpha$ } is weakly compact in L^1 ;
 - Sup_Q($E_Q[X] \gamma(Q)$) is attained.
- Orihuela-Ruiz Galán12: Same but with $\langle L^{\Psi}, M^{\Psi^*} \rangle$ instead of $\langle L^{\infty}, L^1 \rangle$.

Corollary: Analogue of JST for solid \mathscr{X} (Dom = UI)

 $ho:\mathscr{X}
ightarrow\mathbb{R},\,\mathscr{X}$ solid, $ho|_{L^{\infty}}$ has Fatou. Then AE

- ρ has Lebesgue on \mathscr{X} ;
- $\{ XdQ/d\mathbb{P} : \gamma_{\infty}(Q) \leq \alpha \} \text{ is UI, } \forall X \in \mathcal{X}; \leftarrow \gamma_{\infty}(Q) = \sup_{X \in L^{\infty}} (E_Q[X] \rho(X))$
- ^⑤ sup_{γ∞(Q)<∞}($E_Q[X] γ_∞(Q)$) is attained ∀X ∈ 𝔅.
 - All Orlicz spaces & hearts, L^p with $p \in [0, \infty]$ are solid.

 - Don't need to understand what's "σ(X, X*)-compact"!!

Question			

Application: a convenient extension of JST theorem

- Jouini-Schachermayer-Touzi, Delbaen: For $\rho: L^{\infty} \to \mathbb{R}$ with Fatou, AE:
 - ρ has the Lebesgue property;
 - 2 { $Q: \gamma(Q) \le \alpha$ } is weakly compact in L^1 ;
 - Sup_Q($E_Q[X] \gamma(Q)$) is attained.
- Orihuela-Ruiz Galán12: Same but with $\langle L^{\Psi}, M^{\Psi^*} \rangle$ instead of $\langle L^{\infty}, L^1 \rangle$.

Corollary: Analogue of JST for solid \mathscr{X} (Dom = UI)

- $\rho: \mathscr{X} \to \mathbb{R}, \mathscr{X}$ solid, $\rho|_{L^{\infty}}$ has Fatou. Then AE
 - ρ has Lebesgue on \mathscr{X} ;

 - Sup_{γ∞(Q)<∞}($E_Q[X] γ_∞(Q)$) is attained ∀X ∈ 𝔅.
 - All Orlicz spaces & hearts, L^p with $p \in [0, \infty]$ are solid.
 - No (weak & weak*) topology of *X* involved!! ← very very hard (for me)!!
 - Don't need to understand what's " $\sigma(\mathscr{X}, \mathscr{X}^*)$ -compact"!!

• Robust representation of ρ on (Fréchet lattice) \mathscr{X} : if Fatou,

$$\rho(X) = \sup_{Q \in (\mathscr{X}_n^{\sim})_{+,1}} (E_Q[X] - \rho^*(Q)), \quad \rho^*(Q) := \sup_{X \in \mathscr{X}} (E_Q[X] - \rho(X))$$

- \mathscr{X}_n^{\sim} : order continuous dual of $\mathscr{X} \leftarrow$ not easy!! Note: $\mathscr{X} \leftarrow L^{\infty} \Rightarrow \mathscr{X}^* \hookrightarrow ba$: finitely additive signed measures.
- Our regular extension $(\hat{\rho}, M_u^{\hat{\rho}})$ is unique & maximal, in particular,

If $\rho : \mathscr{X} \to \mathbb{R}$ has Lebesgue (and \mathscr{X} solid),

$$\hat{\rho}(X) = \sup_{Q \in \mathcal{Q}_{\gamma}} (E_Q[X] - \gamma(Q)) \text{ with } \gamma(Q) = \sup_{X \in L^{\infty}} (E_Q[X] - \rho(X))$$

• Don't need to know what's \mathscr{X}_n^{\sim} .

Thank You for Your Attention !!

keita.owari@gmail.com